HP Moonshot 1500 Chassis User Manual Page 7

  • Download
  • Add to my manuals
  • Print
  • Page
    / 189
  • Table of contents
  • BOOKMARKS
  • Rated. / 5. Based on customer reviews
Page view 6
1 Introduction and key concepts
Overview
The term Intelligent Platform Management (IPMI), refers to autonomous monitoring and recovery
features implemented directly in platform management hardware and firmware. The key
characteristic of Intelligent Platform Management is that inventory, monitoring, logging, and recovery
control functions are available independently of the main processors, BIOS, and operating system.
Platform management functions are available even when the system is in a powered down state.
IPMI capabilities are a key component in providing enterprise-class management for HA systems.
Platform status information is obtained and recovery actions initiated under situations where system
management software and normal “in-band” management mechanisms are unavailable.
The independent monitoring, logging, and access functions available through IPMI provide a level
of manageability built-in to the platform hardware. This supports systems with no system management
software available for the particular operating system, or the end-user who elects not to load or
enable the system management software.
NOTE: The HP Moonshot-45G Switch Module does not support IPMI. Only the HP Moonshot iLO
Chassis Management Firmware supports IPMI.
Sensor Data Model
The IPMI Sensor Model provides access to monitored information including temperatures, voltages,
and fan status. Instead of providing direct access to the monitoring hardware, IPMI provides access
by abstracted sensor commands, such as the Get Sensor Reading command, implemented
via a management controller. This approach isolates software from changes in the platform
management hardware implementation. Sensors return analog or discrete readings and events
are either discrete or threshold-based. Sensors are classified according to:
Type of readings
Type of events
Event types, sensor types, and monitored entities are represented using numeric codes defined in
the IPMI specification. IPMI avoids reliance on strings for management information and using
numeric codes facilitates internationalization, automated handling by higher level software, and
reduces management controller code and data space requirements.
Sensor owner identification
The definition for the Request/Response identifier, Requester’s ID, and Responder’s ID are specific
to the particular messaging interface used. However, the SDR and SEL must contain information
to identify the owner of the sensor. For management controllers, a slave address and LUN identify
the owner of a sensor on the IPMB. For system software, a software ID identifies the sensor owner.
These fields are used in event messages, where events from management controllers or the IPMB
are identified by an eight-bit field where the upper 7 bits represent the slave address or the system
software ID. The least significant bit is 0 if the value represents a slave address and 1 if the value
represents a system software ID.
Sensor number is not part of the sensor owner ID, but is a separate field used to identify a particular
sensor associated with the sensor owner. This combination of sensor owner ID and sensor number
uniquely identify a sensor in the system.
Table 1 Sensor owner ID and sensor number field definition
System Sensor Owner IDIPMB Sensor Owner ID
system software ID (7 bits)7:1 slave address (7 bits)
Overview 7
Page view 6
1 2 3 4 5 6 7 8 9 10 11 12 ... 188 189

Comments to this Manuals

No comments